Cellular complexity captured in durable silica biocomposites.
نویسندگان
چکیده
Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions.
منابع مشابه
Impact of Maleic Anhydride, Nanoclay, and Silica on Jute Fiber-reinforced Polyethylene Biocomposites
Jute fiber/polyethylene biocomposites were prepared using a hot press molding technique. The effects of maleic anhydride, clay, and silica on the physical, mechanical, and thermal properties of jute fiber-reinforced polyethylene (PE) biocomposites with different fiber loadings (5, 10, 15, and 20 wt.%) were investigated. The biocomposites were characterized by Fourier transform infrared spectros...
متن کاملOptimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder
Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different para...
متن کاملThe Effect of Micro Silica on Permeability and Chemical Durability of Concrete Used in the Corrosive Environment
Micro silica (MS) is an extremely fine, spherical powder that is used as an additive for improving concrete performance. It is obtained as a by product of silicon metal and ferrosilicon alloy production. Due to its pozzolanic nature, micro silica can be used to enhance the qualities of both fresh and hardened concrete. Addition of micro silica into the concrete as a cement rep...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملMultiphase intrafibrillar mineralization of collagen.
In the past, the two major biomineralization motifs, biosilicification and biocalcification, were considered as two discrete processes. However, there is increasing evidence of the existence of an inextricable relationship between biosilica and calcium-based biominerals. The recent discovery of a unique silica–chitin–aragonite biocomposite in one genus of demosponges (Verongida) introduces a no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 43 شماره
صفحات -
تاریخ انتشار 2012